2.8b stability in first-order systems

Monday, February 8, 2021 12:36 PM $\frac{|\operatorname{ocally} \operatorname{osymphtically}}{\operatorname{Recall}^2} \times_{t+1} = f(x_t) \text{ is stable at an equilibrium } \overline{x} \text{ if } |f'(\overline{x})| < |$ $\operatorname{unstable} at an equilibrium } \overline{x} \text{ if } |f'(\overline{x})| > |$ What is the equivalent for first-order systems? Thm: Let X(t+1) = F(X(t)) be a system of n first-order equations. $X(t) = (x_{1}(t), ..., x_{n}(t))^{T}, F = (f_{1}, ..., f_{n})^{T}, ad f_{i} = f_{i}(x_{1}, ..., x_{n}),$ Let \widehat{X} be an equilibrium of the system. Then linearization of the system about \widehat{X} and letting $U(t) = \chi(t) - \widehat{X}$ gives a system U(t+1) = TU(t),where J is the Jacobian matrix of F at X $\mathcal{J}(\bar{X}) = \begin{pmatrix} \frac{\partial f_1}{\partial x_i}(\bar{X}) & \frac{\partial f_1}{\partial x_i}(\bar{X}) & \cdots & \frac{\partial f_n}{\partial x_n}(\bar{X}) \\ \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial x_i}(\bar{X}) & \cdots & \cdots & \frac{\partial f_n}{\partial x_n}(\bar{X}) \end{pmatrix}$ X is locally asymptotically stable if | Ail < V eigenvalues) i Then and unstable if some / 2:1>1. proof sketch: For X(0) s.t. (X-X(0)) < E, with E sufficiently small, can approximate X(t+1) = F(X(t)) by the Taylor Series of F $\chi(t+1) \approx F(\overline{\chi}) + J(\overline{\chi})(\chi(t) - \overline{\chi}) + \frac{1}{2}(\chi(t) - \overline{\chi})^{T} + (\overline{\chi})(\chi(t) - \overline{\chi}) + \cdots$ Jacobin (-lessian

Lecture Page 1

$$\Rightarrow X(t+1) - \bar{X} \approx \overline{J(\bar{X})} (X(t) - \bar{X}) \quad \text{for } X(t) \quad \text{sufficiently close for } \bar{X}.$$

$$U(t+1) \approx \overline{J(\bar{X})} U(t)$$

$$\Rightarrow U(t) = [\overline{J(\bar{X})}]^{\frac{1}{2}} U(0).$$
If all eigenvalues $[\lambda_{c}] < 1$, then $p(\overline{J(\bar{X})}] < 1$.
If $p(\overline{J(\bar{X})}) < 1$, then $t \Rightarrow p(\overline{J(\bar{X})}]^{\frac{1}{2}} \rightarrow D$, so $t \Rightarrow X(t) = \bar{X}.$
If $[\lambda_{c}] > 1$ for one t . then $r = \log a_{3} [X(0) - \bar{X}] \cdot V_{c} \neq 0$, where
 V_{c} is the eigenvalue associated with $[\lambda_{c}] > 1$, then $t \Rightarrow p[U(t)] = \infty$.
Of cases, the heritantum may break down as $|X(t) - \bar{X}|$ grows, lef
 $X(t) = with the eigenvalue a sufficiently small built around \bar{X} ,
 $sv = l^{-2} x \cos b dt$.
Im $2lo = let = \overline{J \in \mathbb{R}^{2\times 2}}$. Then $|\lambda_{c}| < l = V = a_{3} t$ for $lest$
 $one = of the following is thus:
 $Tr(\overline{J}) = l + del(\overline{J}) < 2.$
 $Aut = [\lambda_{c}] + Je(\overline{J}), Tr(\overline{J} < -l - Je(\overline{J})], det (\overline{J}) > l.$
Pref. Let $T = Tr(\overline{J})$ and $S = def(S).$
The characteristic eqn of a 2×2 metrix is
 $p(\lambda) = \lambda^{2} - \tau \lambda + \delta = D$
 $\Rightarrow \lambda_{1,2} = \frac{T \le \overline{J \times U \times V}}{2}$
Forward Case $t = l + \lambda_{c}l < l, \lambda_{1,2} \in \mathbb{R}$
 $T = \lambda_{1,2} = \frac{T \le \sqrt{U \times V}}{2}$$$

Forward Case 1:
$$|\lambda_{i}|<1$$
, $\lambda_{1,2} \in IK$
=> $T^{1} \ge 45$. Also, $T^{2}\lambda_{1}+\lambda_{2}$, $|T| \le |\lambda_{1}|+|\lambda_{2}|<2$.
Furthermy, the fractor $p(\lambda)$ is a parabola with vertex at $\frac{T}{2}$,
and zeros at λ_{1} and λ_{2} . $blo6$, $\lambda_{2} < \lambda_{1}$.
Therefore, $-l < \lambda_{2} \le \frac{T}{2} \le \lambda_{1} < l$
=> $\frac{|T|}{2} < l$, so $4 > T^{2} \ge 45 \Rightarrow 5 < l$.
Also, $|T| = 1 > |\sum_{n} - \lambda_{n}|$ and $|T| = 1 |> |\sum_{n} - \lambda_{n}|$
 $Recall |T| < 2$, so $\frac{T}{2} - 1 < 0$.
=> $l - \frac{T}{2} > |T| - 1 < \frac{T}{2} - \lambda_{1}|$ and $l + \frac{T}{2} > |T| - \lambda_{2}|$
 $Recall |T| < 2$, so $\frac{T}{2} - 1 < 0$.
=> $l - \frac{T}{2} > |T| - \lambda_{1}|$ and $l + \frac{T}{2} > |T| - \lambda_{2}|$
 $Rt = \int \frac{|T|}{2} - \lambda_{1}| = \frac{\sqrt{T^{2} + 45}}{2}$, so
 $l - \frac{|T|}{2} > \frac{\sqrt{T^{2} + 45}}{2}$
=> $l - |T| + \frac{T^{3}}{2} > \frac{T^{2} - 45}{4}$
=> $l - |T| + \frac{T^{3}}{2} > \frac{T^{2} - 45}{4}$
=> $l - |T| < -5$
=> $l + 5 |T|$
 $r = l + 5 .$
Furthermore, $S = \lambda_{1}\lambda_{2}$, so $|S| < l$ => $|A > <2$
Torverd case 2: $|\lambda_{1}| < l$ and $\lambda_{1} = \lambda_{2}$ are complex conjugate.
Thus, $T^{2} < 45$

Lecture Page 3

The
$$z^{2} < 4S$$

$$\lambda_{1,2} = \frac{z}{2} \pm i \cdot \frac{\sqrt{4s-z^{2}}}{2}$$

$$\Rightarrow |\lambda_{i}|^{2} = \frac{z^{2}}{4} \pm s - \frac{z^{4}}{4} = S.$$

$$\Rightarrow 0 < S < 1.$$

$$\text{Ref } |z| < 2JS \leq |+S \qquad (a^{2}+b^{2} \geq 2-1)$$

$$\Rightarrow |z| < |+S < 2.$$
Backmul cose 1: $|z| < |z < 2 \text{ and } \lambda_{i} \in \mathbb{R}, \text{ so } \overline{z}^{2} \geq 4S.$

$$\text{Let } \lambda_{i} = \frac{z}{2} + \frac{\sqrt{z^{2}-4S}}{2}, \quad \lambda_{2} = \frac{z}{2} - \frac{\sqrt{z^{2}-4S}}{2}, \quad x = \lambda_{2} \leq \lambda_{1}.$$
Note $|z| < |+S$

$$\Rightarrow |-|z| > -S$$

$$\Rightarrow (|-\frac{|z|}{2}|)^{2} > \frac{z^{3}}{4} - S \geq 0$$

$$=) |-\frac{|z|}{2} + \frac{\sqrt{z^{2}-4S}}{2} = \lambda_{1}$$
and $-| < \frac{-|z|}{2} - \frac{\sqrt{z^{2}-4S}}{2} \leq \lambda_{2} - y, \quad -| < \lambda_{2} \leq \lambda_{1} < 1.$
Backmut cose 2: $|z| < |z| < |z| < 2 \text{ and } \lambda_{i} = a \text{ conplex cojnarts.}$

$$Then |\lambda_{i}|^{2} = S < 1.$$

The 211 (Jury condition, Scher-Cola criterian,
$$n=3$$
)
Suppose $p(\lambda) = \lambda^3 + a_1\lambda^2 + a_2\lambda^2 + a_3$, $a_1, a_2, a_3 \in IR$ is a performed.
Then the solutions $d_1, d_2, d_3 \text{ of } p(\lambda) \ge 0$ satisfy $|\lambda_{i}| \le 1$ if f
(1) $p(1) \ge 1 + a_1 + a_1 \ge 0$
(2) $(-1)^2 p(-1) \ge 1 - a_1 + a_2 - a_3 \ge 0$, (Neurony $d \ge a = frechant}
(2) $(-1)^2 p(-1) \ge 1 - a_1 + a_2 - a_3 \ge 0$, (Neurony $d \ge a = frechant}
(2) $(-1)^2 p(-1) \ge 1 - a_1 + a_2 - a_3 \ge 0$, (Neurony $d \ge a = frechant}
(2) $(-1)^3 p(-1) \ge 1 - a_1 + a_2 - a_3 = 0$, (Neurony $d \ge a = frechant}
(1) $p(1) \ge 1 + a_1 + a_2 + \cdots + a_{n-1}\lambda + a_n = satisfy$ $|\lambda_{i}| \le 1$, then
(1) $p(1) \ge 1 + a_1 + a_2 + \cdots + a_n \ge 1 + a_n \ge 0$
(2) $(-1)^n p(-1) \ge 1 - a_1 + a_2 - \cdots \ge 1 - 1)^n = a_n \ge 0$
(3) $|a_n| < 1$.
(Neurony but not sufficient)
Def. 2.9 Let \overline{X} be an equilibrium of $X(t+1) = F(X(t))$
 $a_1 = t \le J(\overline{X})$ be the Jackina matrix at \overline{X} , \overline{X} is
hyperbolic if $|\lambda_i| \neq 1$. \forall eigenview $d_{i'}$ of $J(\overline{X})$.
Otherwise, $\overline{F} = a_1 - a_1 + a_2 + \cdots + a_n \ge 0$
(part) $X_{411} = X_6(a^-X_6 - Y_6)$, $a \ge 0$
(part) $X_{411} = Y_6(b + X_8)$, $b \le k \le 1$$$$$

Equilibria are (0,0), (a-1,0), and $(\overline{x},\overline{y}) = (1-b, a+b-2)$ $J = \begin{pmatrix} \frac{\partial}{\partial x} \left[x \left(x - x - y \right) \right] & \frac{\partial}{\partial y} \left[x \left(x - x - y \right) \right] \\ \frac{\partial}{\partial x} \left[y \left(b + x \right) \right] & \frac{\partial}{\partial y} \left[y \left(b + x \right) \right] \end{pmatrix}$ $J = \begin{pmatrix} a - l_{x} - y & -x \\ y & b + x \end{pmatrix}$ $J(0,0) = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \qquad J(a-1,0) = \begin{pmatrix} 2-a & l-a \\ 0 & a+b-l \end{pmatrix} \qquad J(\overline{x},\overline{y}) = \begin{pmatrix} b & -\overline{x} \\ \overline{y} & l \end{pmatrix}$ A1,2=2-a, a+b-1),,2 = a,b After some algebra using the Jury conditions for n=2, Since 0<6<1, (0,0) is Need 1<a×2-b to be locally asymptotically stable find 2 < a + 5 = locally asymptotically locally asymptotically stable and nonnegative. stuble if all. and money-the Intuitively, everything prey survives, but predator prey survives, and preditor survives ies goes extract